现阶段应用最广泛的正极材料有钴酸锂、锰酸锂、磷酸铁锂和镍钴锰酸锂等。PTMS筒式磁选机处理锂离子电池正极材料的粒度、形貌、比表面积、振实密度、结构、成分等理化性能和电化学性能对锂离子电池正极材料的应用有着重要的影响。准确分析测定这些性能参数对锂离子电池正极材料研发者和使用者都有着重要的意义。对这些使用正极材料理化性能和电化学性能的分析方法做综述。高容量的O3型钠基层状过渡金属氧化物材料NaTmO2是一种应用前景广阔的钠电正极材料。但是,这类材料的实际应用受到了其固有的空气敏感性的极大限制。针对这一问题的改性策略通常有表面包覆和元素掺杂两种。但是,目前的改性手段主要还是依靠高通量实验的方式,其背后的机理尚不明晰。因此,深入的机理研究对设计高空气稳定性的O3型钠基层状氧化物至关重要。
通过引入和氧轨道杂化作用较弱的过渡金属组分,促进更多的电荷从钠到氧的转移,形成更强的Na-O结合,进而抑制活性晶格钠的损失,显著提升材料的空气稳定性。当O3型材料暴露于空气中,钠层会发生一系列的老化过程,如活性晶格钠的自发脱出和水分子的嵌入等。通过提高钠与宿主晶格之间的结合能有望提升材料的空气稳定性。一方面,老化反应中的活性钠脱出需要断裂Na-O键,因此较高的Na-O结合能可以有效提升老化反应所需的能量;另一方面,较高的Na-O结合能缩小了钠层间距,较窄的钠层空间作为物理屏障抑制了异质分子的嵌入和晶格离子的自发脱出。结果表明新合成的四个样品均为O3型结构。在空气中暴露5天后,NaFC和NaNM材料形成大量的Na2CO3碱性杂质,而PTMS筒式磁选机改性后的样品NaFCMT和NaNMT却仍能保持原有的O3结构,没有任何新相的出现。
基于层状过渡金属氧化物中钠层和过渡金属层的交替垛堞结构,提出通过在过渡金属层掺杂半径略大、费米能级相异的离子,构建和氧轨道杂化作用较弱的过渡金属组分,促进钠原子上更多的电荷转移至氧,形成更强的Na-O结合,进而抑制活性晶格钠损失和异质分子的嵌入,显著改善其空气稳定性。基于这一思想,对两种典型的O3型材料(NaFe0.5Co0.5O2(NaFC)和NaNi0.5Mn0.5O2(NaNM))进行了PTMS筒式磁选机改性。选用Mg2+(半径考虑)/Ti4+(费米能级考虑)取代NaFC中的Fe3+,得到NaFe0.3Co0.5Mg0.1Ti0.1O2(NaFCMT);用Ti4+(半径考虑和费米能级考虑)取代NaNM中的Mn4+,得到NaNi0.5Mn0.25Ti0.25O2(NaNMT)。通过对氧元素XPS结果进行拟合分析,发现NaFC和NaNM样品暴露空气后表面残碱含量明显增加,相比较而言,NaFCMT和NaNMT则变化不明显。对老化后样品的TOF-SIMS深度分析表明,改性后的NaFCMT和NaNMT样品中Na−和NaCO3-信号分布更均匀,表明改性后的样品有效地抑制了活性钠的自发脱出和残碱的形成。
佛山盛翰机械科技有限公司,咨询电话:13929972692